skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Shang-En"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bun, Mark (Ed.)
    We introduce and study the problem of balanced districting, where given an undirected graph with vertices carrying two types of weights (different population, resource types, etc) the goal is to maximize the total weights covered in vertex disjoint districts such that each district is a star or (in general) a connected induced subgraph with the two weights to be balanced. This problem is strongly motivated by political redistricting, where contiguity, population balance, and compactness are essential. We provide hardness and approximation algorithms for this problem. In particular, we show NP-hardness for an approximation better than n^{1/2-δ} for any constant δ > 0 in general graphs even when the districts are star graphs, as well as NP-hardness on complete graphs, tree graphs, planar graphs and other restricted settings. On the other hand, we develop an algorithm for balanced star districting that gives an O(√n)-approximation on any graph (which is basically tight considering matching hardness of approximation results), an O(log n) approximation on planar graphs with extensions to minor-free graphs. Our algorithm uses a modified Whack-a-Mole algorithm [Bhattacharya, Kiss, and Saranurak, SODA 2023] to find a sparse solution of a fractional packing linear program (despite exponentially many variables) which requires a new design of a separation oracle specific for our balanced districting problem. To turn the fractional solution to a feasible integer solution, we adopt the randomized rounding algorithm by [Chan and Har-Peled, SoCG 2009]. To get a good approximation ratio of the rounding procedure, a crucial element in the analysis is the balanced scattering separators for planar graphs and minor-free graphs - separators that can be partitioned into a small number of k-hop independent sets for some constant k - which may find independent interest in solving other packing style problems. Further, our algorithm is versatile - the very same algorithm can be analyzed in different ways on various graph classes, which leads to class-dependent approximation ratios. We also provide a FPTAS algorithm for complete graphs and tree graphs, as well as greedy algorithms and approximation ratios when the district cardinality is bounded, the graph has bounded degree or the weights are binary. We refer the readers to the full version of the paper for complete set of results and proofs. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Since the mid-1980s it has been known that Byzantine Agreement can be solved with probability 1 asynchronously, even against an omniscient, computationally unbounded adversary that can adaptivelycorruptup tof < n/3parties. Moreover, the problem is insoluble withf ≥ n/3corruptions. However, Bracha’s [13] 1984 protocol (see also Ben-Or [8]) achievedf < n/3resilience at the cost ofexponentialexpected latency2Θ (n), a bound that hasneverbeen improved in this model withf = ⌊ (n-1)/3 ⌋corruptions. In this article, we prove that Byzantine Agreement in the asynchronous, full information model can be solved with probability 1 against an adaptive adversary that can corruptf < n/3parties, while incurring onlypolynomial latency with high probability. Our protocol follows an earlier polynomial latency protocol of King and Saia [33,34], which hadsuboptimalresilience, namelyf ≈ n/109 [33,34]. Resiliencef = (n-1)/3is uniquely difficult, as this is the point at which the influence of the Byzantine and honest players are of roughly equal strength. The core technical problem we solve is to design a collective coin-flipping protocol thateventuallylets us flip a coin with an unambiguous outcome. In the beginning, the influence of the Byzantine players is too powerful to overcome, and they can essentially fix the coin’s behavior at will. We guarantee that after just a polynomial number of executions of the coin-flipping protocol, either (a) the Byzantine players fail to fix the behavior of the coin (thereby ending the game) or (b) we can “blacklist” players such that the blacklisting rate for Byzantine players is at least as large as the blacklisting rate for good players. The blacklisting criterion is based on a simple statistical test offraud detection. 
    more » « less
  3. Given an undirected weighted graph with n vertices and m edges, we give the first deterministic m1+o(1)-time algorithm for constructing the cactus representation of all global minimum cuts. This improves the current n2+o(1)-time state-of-the-art deterministic algorithm, which can be obtained by combining ideas implicitly from three papers [22, 27, 12]. The known explicitly stated deterministic algorithm has a runtime of Õ(mn) [9, 34]. Using our technique, we can even speed up the fastest randomized algorithm of [23] whose running time is at least Ω(m log4 n) to O(m log3 n). 
    more » « less